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In this paper, we establish a relation between growing networks and Markov chains, and propose a compu-
tational approach for network degree distributions. Using the Barabási-Albert model as an example, we first
show that the degree evolution of a node in a growing network follows a nonhomogeneous Markov chain.
Exploring the special structure of these Markov chains, we develop an efficient algorithm to compute the
degree distribution numerically with a computation complexity ofOst2d, wheret is the number of time steps.
We use three examples to demonstrate the computation procedure and compare the results with those from
existing methods.
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I. INTRODUCTION

Complex networks describe a wide range of practical sys-
tems of high technological, biological, and social importance
f1,2g. For example, the Internet, the World Wide Web
sWWWd, biological cells, and communities of scientists can
all be described as complex networks.

Erdös and Rényif3g started the early studies of complex
networks as random graphs in the 1960s. Many years later,
Watts and Strogatz’s construction of a small-world network
model in 1998f4g represents an interesting development for
the study of complex networks in that it was motivated by
observations of real system behaviorsse.g., Milgram’s six
degrees of separationf5gd. A common feature of the random
graph and small-world networks is that the degree distribu-
tions sthe probability of finding a node withk connectionsd
are Poissonian. However, empirical evidence from some
growing networks, such as the Internet and WWW, show a
fundamentally different picture, i.e., the tail of the degree
distribution follows a power law. This led to the introduction
in 1999 of scale-free networks by Albert, Jeong, and
Barabási, in their pioneering workf6–8g, and the start of a
new phase in the study of complex networks. Recent studies
f9–20g are characterized by empirical observations of scale-
free behaviors in various practical systems and investigations
of the formation mechanisms of scale-free networks. A num-
ber of important properties in scale-free networks have been
identified, such as the small-world character, the emergence
of hubs, and robustness and frangibility. These properties
show that scale-free networks can play an important role in
the understanding of many complex and important systems.

Two general features can be observed in many real-world
networks: successive additions of new nodes and certain

preferences in linking to existing nodes. Barabási, Albert,
and Jeong proposed two mechanisms to characterize the evo-
lution of a scale-free networkf7,8g. One is the growth
mechanism: starting fromm0 nodes, the network grows at a
constant speed, i.e., adding one node at each time step and
connecting tomsmøm0d existing nodes; and preferential at-
tachment: the chance that an existing node receives a con-
nection from a new node is proportional to the number of
connections it already has. The authors show that, under
these two mechanisms, a network evolves into a stationary
scale-free state. Its degree distribution follows a power law
with the degree exponentg=2.9±0.1 from simulation analy-
sis andg=3 from the analytical resultf8g. These results are
significant for complex networks and the two mechanisms
form the first model, referred to as the Barabási-AlbertsBAd
model, by which large networks can self-organize into a sta-
tionary scale-free state. Empirical evidence shows that in
many networks, the number of edges grows faster than the
number of nodesf10g. This led to the investigation of
m-varying BA models, such as that of Dorogovtsev and
Mendesf20g.

Our research is mainly motivated by the following obser-
vation. While analytical solutions of the degree distribution
for some simple models of growing networks, such as the
BA model, can usually be obtained, one has to resort to
simulation for solutions when the mechanisms in the model
become more complex. This may inhibit the further develop-
ment of the theory on complex networks. In this paper, we
propose an alternative approach. We first find that the degree
evolution of a growing network can be characterized by a
sequence of nonhomogeneous Markov chains. By carefully
analyzing the structure of these Markov chains, we can then
develop an efficient numerical method to compute the net-
work degree distribution. To show the feasibility and effi-
ciency of our numerical method, we compute the degree dis-
tributions of growing networks under the basic BA model
and two of its variants.

We organize the paper as follows. In Sec. II, we first
review some of the existing methods for network degree dis-
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tributions. We then show, using the BA model, how the de-
gree evolution of a node in a growing network can be repre-
sented as a Markov chain. Exploring the special structure of
the transition probability matrices of these Markov chains,
we derive a formula by which the network degree distribu-
tion can be efficiently computed. In Sec. III, we present the
numerical results for the BA model, comparing them with
the analytical results, and discuss issues related to the imple-
mentation of the computation procedure. In Sec. IV, we con-
struct the Markov chains for twom-varying BA models and
provide the numerical results of the network degree distribu-
tions. We conclude the paper and point out some future re-
search opportunities in Sec. V.

II. DEGREE EVOLUTION AND MARKOV CHAINS

With the preferential attachment mechanism of the BA
model, the probability that nodei added at time stepi re-
ceives a connection from an upcoming new node is propor-
tional to its own degreeki f7g, i.e.,

Pskid =
ki

o j
kj

. s1d

Assuming continuity ofkistd and treatingPskid as its rate of
growth, the degree of nodei at time stept then satisfies the
following dynamic equationf7,8g:

]ki

]t
= mPskid = m

ki

o j
kj

=
ki

2t
. s2d

Under the initial condition thatkistid=m, the solution of Eq.
s2d leads to

kistd = mS t

ti
Db

, b =
1

2
, s3d

whereti is the time when nodei joins the network, and to the
degree distribution

Pskd , 2m2k−g, g = 3. s4d

Here,b is called the dynamic exponent whileg is the degree
exponent.

The above simple analytical method is often referred to as
the continuumsmean fieldd theory. Similar power-law results
for the degree distribution of the BA model are also obtained
using different analytical methods by other authors. For ex-
ample, with the master-equation approachf14g, Dorogovtsev,
Mendes, and Samukhin treat the degreekistd of a nodei at a
fixed time t as a random variable. Thus its probability
Psk,ti ,td satisfies the following relation:

Psk,ti,t + 1d =
k − 1

2t
Psk − 1,ti,td + S1 −

k

2t
DPsk,ti,td. s5d

Let

Psk,td =
oti

Psk,ti,td

t
. s6d

Assuming that the limit Pskd=limt→`Psk,td exists and
limt→`tfPsk,t+1d−Psk,tdg=0 san additional conditiond, the
degree distributionPskd satisfies the equation

2Pskd − 2dk,m = sk − 1dPsk − 1d − kPskd, s7d

with the solution

Pskd =
2msm+ 1d

ksk + 1dsk + 2d
. s8d

Krapivsky, Redner, and Leyvraz’s rate-equation approach
f15g focuses on the numberNkstd of nodes withk edges at
time t. For the BA model,Nkstd is shown to satisfy

dNk

dt
= m

sk − 1dNk−1std − kNkstd

ok
kNkstd

+ dk,m. s9d

Asymptotically,Nkstd= tPskd andokkNkstd=2mt, which leads
to Eq. s7d.

While the above methods handle well simple models,
such as the BA model, they may not render analytical solu-
tions for more complicated models. In this case, one can
usually use simulation. While simulation is widely appli-
cable, it can be quite time consuming and may not be flexible
enough for in-depth analysis of network behaviors. Here, we
propose a different approach to capture the network dynam-
ics. We use the BA model to present the idea and the proce-
dure of our approach.

Consider the degreeKistd of nodei at timet. Based on the
preferential attachment mechanism of the BA model, the se-
quencehKistd , t= i , i +1, . . .j is a stochastic process with the
state spaceV=hm,m+1, . . .j snoting that the original nodes
are not consideredd. Here and below, we use the upper caseK
to emphasize the fact that the degree sequence is a stochastic
process. The attachment mechanism also indicates that the
future evolution of the process is independent of the past
history, given its current state; but it is time dependent. This
shows that the processhKistdj is in fact a nonhomogeneous
Markov chainf21g, with time-dependent transition probabili-
ties

pkjst + 1d = PhKist + 1d = j uKistd = kj

= 51 − k/2t, j = k,

k/2t, j = k + 1

0 otherwise,
6 s10d

for k=m, . . . ,m+ t− i, and fork.m+ t− i, we set
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pkjst + 1d = H1, j = k,

0, j Þ k,
J s11d

sincePhKistd=kj=0. Thus, the dynamics of a node from the
time it joins the network is described by a nonhomogeneous

Markov chain and the whole networksexcluding the original
nodesd is completely described byt nonhomogeneous Mar-
kov chains, wheret is the time of the observation. LetPist
+1d be the one-step transition probability matrix of nodei at
time t. We have, fort= i , i +1, . . .

Pist + 1d = 3
1 −

m

2t

m

2t

1 −
m+ 1

2t

� �

1 −
m+ t − i

2t

m+ t − i

2t

1 0

� �

4 . s12d

Now let fWistd be the probability vectorsdistributiond of
Kistd for a givent, and

FWsS,Tdst + 1d = o
i=S

T

fWist + 1d, Psk,t + 1d =
Fk−m+1

sS,td st + 1d
t − S+ 1

.

s13d

Here, the integerSù1 is needed technically for the transition
probability matrix. It is related tom, and its value and impact
can be better understood when we discuss the computation
results in the next section. The meaning and the value of the
integerTø t will also be clear when we describe the compu-
tation procedure later. In Eq.s13d, we use thesk−m+1dth
componentFk−m+1

sS,td st+1d of vector FW sS,tdst+1d to compute
Psk,t+1d since the probability vector starts with degreem,
then degreem+1, m+2, . . .. Finally, the desired degree dis-
tribution of the network isPskd=limt→`Psk,t+1d.

Let us examine Eq.s13d to see what is involved if we
want to compute the network degree distribution. It is clear
thatPhKisid=kj=1 if k=m and 0 otherwise. We then have the
initial probability vector

fWisid = s1,0,0, . . .d = eW1 s14d

for any i. By density evolution of Markov chain, thest
+1dth-step probability vectorfWist+1d is given by

fWist + 1d = eW1 ·Pisi + 1d ·Pisi + 2d ¯ Pist + 1d,
s15d

t = i,i + 1, . . . ,

where the ellipsis on the right-hand side of the equation rep-
resents matrix multiplications. This, together with Eq.s13d,
shows that computing the degree distribution requires the
multiplications and summations of an infinite number of in-

finite matrices, which are in general very difficult numeri-
cally. Fortunately, our past experience in infinite matrix com-
putationsf22g with a rectangle-iterative algorithm guides us
to explore the special structure of the one-step transition
probability matrices. This leads to dramatically simplified
matrix manipulations and a highly efficient algorithm.

We note that while the transition probability matrices of
consecutive nodes are different, their structural similarities
lead to the following relations:

eW1Pistd = eW1PSstd, i = S+ 1,S+ 2, . . . , t = i + 1,i + 2, . . . ,

s16d

eW1PistdPist + 1d = eW1PSstdPSst + 1d, i = S+ 1,S+ 2, . . . ,
s17d

t = i + 1,i + 2, . . . ,

and in general

eW1PistdPist + 1d ¯ Pist + sd = eW1PSstdPSst + 1d ¯ PSst + sd,

s18d

for i =S+1,S+2, . . ., t= i +1,i +2, . . ., ands=2,3, . . ..Substi-
tuting the above relations into

FWsS,Tdst + 1d = o
i=S

T

fWist + 1d

= o
i=S

T

eW1Pisi + 1d ·Pisi + 2d ¯ Pist + 1d,

s19d

we obtain the following key computation formula:
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FWsS,Tdst + 1d = „h¯feW1PSsS+ 1d + eW1gPSsS+ 2d + ¯ j + eW1…

3PSsT + 1d ¯ PSst + 1d. s20d

With Eq. s20d, the computation ofFW sS,tdst+1d becomes
very easy. We start from the innermost bracket. After one
multiplication and one summation, we obtain a row vector
whose first two elements are nonzero. The second round of
multiplication and summation leads to a row vector with the
first three elements being nonzero, and so on and so forth.
The final result is a row vector with the firstt−S+1 elements
being nonzero. An efficient algorithm with a complexity of
Ost2d can be developed to implement formulas20d numeri-
cally.

III. COMPUTATION RESULTS AND DISCUSSION

In this section, we discuss the numerical results for the
BA model.

Figure 1 shows the complete degree distributions of the
BA model on a log-log scale, with different computation
timest. We observe that each solid curve can be divided into
three different sections: a straight middle section, clearly ex-
hibiting the power-law property; a head section and an end
section that bend inward, i.e., very small and very large de-
grees with probabilities smaller than the power law dictates.
The numerical result matches the corresponding analytical
result sthe dashed lined almost exactly except at the end of
the curve.

Why are the probabilities computed here smaller than the
power law would give at the end of the curves? By the BA
model, the degrees of the initial nodes are not considered in
the computation of the network degree distribution, but they
are likely to be among the group of nodes with the largest
degrees, i.e., with degrees close to the end of the curve. With
the numerical methodsor simulation for this matterd, we
have to stop the computation at a finitet, and thus the pro-
portion of the ignored initial nodes among all the nodes with
largest degrees can be large enough to lower the degree prob-
abilities of the end section. The sooner the computation
stops, the earlier the curve bends. This can be see from the
three curves of cases2d with different stopping timest. With

TABLE I. Degree exponent and coefficients of the BA
model.

Parameterm Time t Exponentg Coefficientc

1 150000 2.960830 3.147515

3 100000 2.989636 21.79266

3 150000 2.990032 21.89667

3 200000 2.980275 21.01711

5 150000 2.978894 52.58430

FIG. 1. The complete degree distributions of the BA model with
different m and t. From left to right by the numerical method:s1d
m=1 and S=1 with t=150 000; s2d m=3 and S=2 with t
=100 000, 150 000, and 200 000, respectively; ands3d m=5 and
S=3 andt= =150 000. The analytical results from formulas4d is the
dashed line, withm=5.

FIG. 2. The degree distributions of the BA model withm=5 for
S=3 and 13.

FIG. 3. The degree distributions of the BA model form=1, 3,
and 5 from left to right.
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the analytic method, we do not observe this effectse.g., from
the dashed lined because it gives the degree distribution ast
approaches infinity.

Now consider the bending at the head of the curves. For-
mula s4d is obtained by the continuum theory. Strictly speak-
ing, it is a densitysintegrating fromm to ` yields 1d. Using
it to approximate the discrete probability for largek is suffi-
ciently accurate. For small degrees, it tends to overestimate
the probability. This can be seen from formulas8d which is
obtained with a discrete approach. Whenk is small, the prob-
abilities obtained from Eq.s8d are smaller than the corre-
sponding power-law probabilities. So formulas8d can be
used to estimate small degree probabilities. The Markov
chain method is a discrete approach and can also take care of
the small degrees.

Recall that the initial nodes are ignored in the BA model
in computing degree distributions. Whenm is greater than 1,
we also need to take out additional nodes for the transition
probability matrices to be properly defined. For example, the
first node is ignored whenm=3 and the first and second
nodes are ignored whenm=5. In the algorithm, we eliminate
these nodes by starting the computation from time stepS.
Generally speaking,S mainly affects the end section of the
distribution in the numerical method. In Fig. 2, the solid
curve corresponds to the case withS=3 while the dashed
curve corresponds to the case withS=13, and both have the
samem=5 and the same stopping timet=150 000. We ob-
serve that the two curves overlap all the way down to a point
aroundPskd<10−6, where both curves start bending inward,
but the curve forS=13 obviously bends more. In other
words, the exact value ofSmainly affects how much the end
section bends.

Summarizing the above analysis, we conclude that the
head and middle sections of the curves computed by the
Markov chain method capture the degree distribution of the
BA model accurately. For the end section, the numerical
method underestimates the degree probabilities because we
can only compute up to a finite time. Fortunately, what we
really want to know is whether the power law holds for a
particular networksmodeld and what is the exactg value.
These can be determined by the middle section of the curves.
If the curves show a power-law behavior, the network is
scale-free. Otherwise, it is not. Either way, our method can
help to determine the pattern as long as the degree evolution
can be modeled by this type of Markov chain. In general, if
the computation time is between 105 and 106, the choice ofS
can be between 20 and 30, and the section of the curve with
probabilities between 10−3 and 10−6 should be sufficient to
reflect the asymptotic behavior of the degree distribution.
Therefore, in Figs. 3–5 below, we will provide the degree
distribution in the probability range from 100 to 10−6.

We now compare the numerical results of the BA model
with the analytic results from formulas8d.

The dashed curves for the analytical results and the tri-
angle curves for the corresponding numerical results in Fig.
3 overlap almost completely. It is clear that the numerical
results are extremely close to the analytical results. The tri-
angle curve in the middle is in fact the overlapping of three
curves corresponding to three differentt values. This shows
that the degree distribution is stationary. Furthermore, except

for the small degrees, the three triangle curves are basically
parallel, indicating that the degree exponent of the BA model
is independent ofm.

In Table I, the exponentg and the coefficientc are fitted
for differentm andt using the least squares method. We note
that for the degree exponent in Table I, we do not include the
data for small degrees in the calculation. Similarly, they are
not included for the exponents in Tables III and V below. We
observe that the degree exponent is independent ofm and the
value matches those of simulation and the analytical solution
with the mean field method. The coefficient of degree distri-
bution c is between 2m2 and 2msm+1d, again matching the
theoretical value from the master-equation approach. Fur-
thermore, results form=3 show that the coefficientc is in-
dependent oft, i.e., the network is stationary.

IV. m-VARYING BA MODELS

Section III shows that the Markov chain method provides
accurate results with a moderate computation time. In this
section, we show that this method can be efficiently applied
to more complex models. We will construct the Markov
chains and compute the degree distributions of two cases of
the BA model withm-varying functions, which are of inter-
ests as empirical evidences have shown that the number of
edges grows faster than the number of nodes in many net-
works f10g.

A. Power function

Let mtu be the number of new links added at time stept,
0øu,1, i.e., nodet will link itself to mtu different existing
nodes. Everything else remains the same as in the BA model.

We note that aftert time steps, the network hasN= t
+m0 nodes and approximatelye0

t mxudx links. The total num-
ber of degrees in the system at timet is

o
j

kj < 2E
0

t

mxudx=
2m

u + 1
tu+1. s21d

Assuming continuity,kistd then satisfies the following dy-
namic equation:

]ki

]t
= mtuPskid = mtu

ki

o j
kj

=
su + 1dki

2t
. s22d

Under the initial conditionkistid=mti
u, where ti is the time

when nodei joins the network, we solve this equation and
obtain

kistd = mti
uS t

ti
Ds1+ud/2

= mtuS t

ti
Db

, b =
1 − u

2
. s23d

Hence the degree distribution at timet is

Psk,td ,
2

1 − u
m2/s1−udtzk−g, s24d

with
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g =
3 − u

1 − u
, z=

2u

1 − u
. s25d

Here,z is called the nonstationary exponent. Thism-varying
BA model was proposed inf20g.

We now construct the Markov chains for the degree se-
quencehKistd , t= i , i +1, . . .j. The state space isVi =hmi ,mi

+1, . . .j, wheremi =mfiug sor mi =fmiugd. At time t, the prob-
ability that an existing nodei will connect with the new node
is

mtu
ki

o j
kj

<
su + 1dki

2t
. s26d

Hence, the one-step transition probabilities are

pkjst + 1d = PhKist + 1d = j uKistd = kj

=51 −
su + 1dk

2t
, j = k,

su + 1dk
2t

, j = k + 1,

0 otherwise.
6 . s27d

for k=mi , . . . ,mi + t− i; and sincePhKistd=kj=0, we set, for
k.mi + t− i,

pkjst + 1d = H1, j = k;

0, j Þ k.
J . s28d

Thus the transition probability matrix is

Pist + 1d = 3
1 −

misu + 1d
2t

misu + 1d
2t

1 −
smi + 1dsu + 1d

2t

smi + 1dsu + 1d
2t

� �

1 −
smi + t − idsu + 1d

2t

smi + t − idsu + 1d
2t

1 0

� �

4
s29d

for t= i , i +1, . . ..
We now provide the computation results whenu=0.2 and

S=32. We note that the structure of the transition probability
matrices here is similar to that ofs12d. The difference is that
now mi is a step function ofi, as shown in Table II. There-
fore, relationss16d–s18d hold for each interval, e.g., the in-
terval s243,1023d, and we obtain the following important re-
sult:

FWs32,tdst + 1d = FWs32,242dst + 1d + FWs243,1032dst + 1d + ¯

+ FWs59 049,99 999dst + 1d + FWs100 000,tdst + 1d.

s30d

Similarly, the initial probability distribution is fWisid
=s1,0,0, . . .d=eW1 for any i. Thus the same algorithm based

on formulas20d can be used to compute the degree distribu-
tion for this network.

From the computation results, we plotPsk,td for some
different m and t on a log-log scale in Fig. 4. We also list
some numerical results in Table III, from which it is clear
that this network self-organizes into a nonstationary scale-
free network, with a degree exponentg<3.5.

Figure 4 shows the degree distributions from the numeri-
cal method and from formulas24d, respectively. In cases2d
of the numerical results, the three curves are separated, dem-
onstrating the nonstationarity of the degree distribution.
Again, we can see from the lower part of the curves that the
degree exponents are essentially independent ofm as the
lines are basically parallel to each other. We note that the
three dashed lines of the analytical results are almost per-
fectly parallel to the lower part of the corresponding solid
curves, showing that the numerical results and analytical re-

TABLE II. Intervals of constantmi for the power function case.

Time i 32 243 1024 3125 7776 16807 32768 59049 100000 161051

fi0.2g 2 3 4 5 6 7 8 9 10 11
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sults match very well in term of the degree exponent. Since
s24d is obtained using the mean field method, it does not
characterize the small degree accurately as discussed in Sec.
III. This can be seen in Fig. 4 in which the solid curves bend
obviously on the top while the dashed lines are completely
straight. We also observe that whenm=5, there is a gap
between the lower part of the solid curve and the dashed line.
This can be attributed to the difference between the con-
tinuum approach fors24d and the discrete approach for the
numerical computation. The continuum approach may over-
estimate the number of links while the discrete approach
tends to underestimate the number of links, in particular
when m is large. For example, whenm=5, the number of
links added between timest=32 and 242ssee Table IId is
5t0.2 for the mean field method, but for our numerical
method, it remains a constant 5ft0.2g=10.

B. Logarithmic function

Let m ln t be the number of new links in time stept for
tù2.

We note that aftert time steps, the network hasN= t
+m0 nodes and approximatelye0

t m ln x dx links. Then, the
number of total degrees of the system at timet is

o
j

kj < 2E
0

t

m ln x dx= 2mtsln t − 1d. s31d

The average system degree isk̄=2msln t−1d, i.e., it follows a
logarithmic law. Due to its complexity, there has been no
analytical results for the degree distribution for this
m-varying BA model.

We now construct the Markov chains for the degree se-
quencehKistd , t= i , i +1, . . .j. The state space isVi =hmi ,mi

+1, . . .j, wheremi =mfln ig sor mi =fm ln igd. At time t, the
probability that an existing nodei will connect with the new
node is given by

m ln t
ki

o j
kj

<
ki ln t

2tsln t − 1d
. s32d

Hence, the one-step transition probabilities are

pkjst + 1d = PhKist + 1d = j uKistd = kj

=51 −
k ln t

2tsln t − 1d
, j = k,

k ln t

2tsln t − 1d
, j = k + 1,

0, otherwise
6 s33d

for k=mi , . . . ,mi + t− i. Again, sincePhKistd=kj=0, we set,
for k.mi + t− i,

pkjst + 1d = H1 j = k,

0 j Þ k.
J s34d

TABLE III. Numerical results of the power function case.

Parameterm Time t Exponentg Coefficientc

1 150000 3.502938 891.641

3 100000 3.499978 8213.46

3 150000 3.502746 10920.8

3 200000 3.496971 12300.2

5 150000 3.503176 37303.5

TABLE IV. Intervals of constantmi for the logarithmic function case.

Time i 21 55 149 404 1097 2981 8104 22027 59875 162755

fln ig 3 4 5 6 7 8 9 10 11 12

FIG. 4. The degree distributions of the power function case.
Five solid curves for numerical results from left to right fors1d m
=1 with t=150 000; s2d m=3 with t=100 000, 150 000, and
200 000; ands3d m=5 with t=150 000. Three dashed lines for the
corresponding analytic results from left to right for:m=1, t
=150 000;m=3, t=200 000; andm=5, t=150 000.
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Thus, we have, fort= i , i +1, . . .,

Pist + 1d = 3
1 −

mi ln t

2tsln t − 1d
mi ln t

2tsln t − 1d

1 −
smi + 1dln t

2tsln t − 1d
smi + 1dln t

2tsln t − 1d
� �

1 −
smi + t − idln t

2tsln t − 1d
smi + t − idln t

2tsln t − 1d
1 0

� �

4 . s35d

We note that the structure of the transition probability
matrices here is similar to that of Eq.s12d. With S=21,mi is
a step function ofi as shown in Table IV.

Therefore, relationss16d–s18d hold for each interval, e.g.,
s404,1096d. Thus we obtain the following important result:

FWs21,tdst + 1d = FWs21,54dst + 1d + FWs55,148dst + 1d + ¯

+ FWs59875,162754dst + 1d + FWs162755,tdst + 1d.

s36d

Similarly, the initial probability distribution is fWisid
=s1,0,0, . . .d=eW1 for any i. Thus the same algorithm based
on Eq. s20d can be used to compute the degree distribution
Psk,td for this network.

We provide the numerical results in Table V and Figure 5.
Table V shows clearly that this network self-organizes into a
nonstationary scale-free network, with the degree exponent
g<3.1.

We note from Fig. 5 that the three curves withm=3 are
very close to each other, but they do not overlap entirely.
This shows that while the degree distribution is not station-
ary, the nonstationary exponent is very small. On the other
hand, we can see some oscillations in the last curve withm
=5. We believe that this is mainly due to the jumps of the
number of new links whenfln ig increases. With a largerm,
the size of the jump is bigger, making the oscillations in the
last curve more pronounced. But we note that the oscillation
becomes less obvious when the degree is large enough,

showing that when the degree becomes larger, the effect of
the jumps becomes weaker. Also, if we usemi =fm ln ig in-
stead ofmi =mfln ig, the oscillation should be less obvious,
but the computation time will increase.

V. CONCLUSIONS AND DISCUSSION

We have established a correspondence between the degree
evolution of a growing network under the BA model or its
variants and a set of nonhomogeneous Markov chains. By
manipulating the transition probability matrices, we develop
an efficient procedure to estimate the degree distribution nu-
merically with remarkable accuracy. Through detailed analy-
sis and comparisons of the analytical and numerical results,
we show how to implement the numerical procedure effec-
tively. In conclusion, our numerical method provides an ef-
fective alternative to the analytical approach, especially
when it is difficult to handle more complex network models
analytically.

TABLE V. Numerical results of the logarithmic function
case.

Parameterm Time t Exponentg Coefficientc

1 150000 3.169873 542.9149

3 100000 3.117526 1539.876

3 150000 3.081926 1722.288

3 200000 3.050253 1952.588

5 150000 3.029171 2823.681

FIG. 5. The degree distributions of the logarithmic function
case. Five curves from left to right fors1d m=1 with t=150 000;s2d
m=3 with t=100 000, 150 000, and 200 000; ands3d m=5 with t
=150 000.
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The use of Markov chains to model the degree evolution
opens the door for the application of methodologies and re-
sults from a mature field to the exciting field of complex
networks. For instance, can we model the joint degree evo-
lution of two nodes by two-dimensional Markov chain and
compute the joint degree distribution? Can we construct a
different type of Markov chain to model the distance be-
tween two nodes so that the average path length can be com-
puted? The fact that the evolution of a complex network can
be modeled by Markov chains may indicate an important
direction for us to investigate the underlying mechanisms
and the essential properties of growing networks, utilizing
the extensive understanding of the structural properties of

Markov chains through many years’ theoretical development
and applications to the study of many natural phenomena.
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