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Markov chain-based numerical method for degree distributions of growing networks
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In this paper, we establish a relation between growing networks and Markov chains, and propose a compu-
tational approach for network degree distributions. Using the Barabasi-Albert model as an example, we first
show that the degree evolution of a node in a growing network follows a nonhomogeneous Markov chain.
Exploring the special structure of these Markov chains, we develop an efficient algorithm to compute the
degree distribution numerically with a computation complexityO§f?), wheret is the number of time steps.

We use three examples to demonstrate the computation procedure and compare the results with those from
existing methods.
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[. INTRODUCTION preferences in linking to existing nodes. Barabasi, Albert,
and Jeong proposed two mechanisms to characterize the evo-
Complex networks describe a wide range of practical systution of a scale-free network7,8]. One is the growth
tems of high technological, biological, and social importancemechanism: starting frorm, nodes, the network grows at a
[1,2]. For example, the Internet, the World Wide Web constant speed, i.e., adding one node at each time step and
(WWW), biological cells, and communities of scientists canconnecting tan(m=m,) existing nodes; and preferential at-
all be described as complex networks. tachment: the chance that an existing node receives a con-
Erdos and Rényji3] started the early studies of complex nection from a new node is proportional to the number of
networks as random graphs in the 1960s. Many years lateconnections it already has. The authors show that, under
Watts and Strogatz’s construction of a small-world networkthese two mechanisms, a network evolves into a stationary
model in 19994] represents an interesting development forscale-free state. Its degree distribution follows a power law
the study of complex networks in that it was motivated byWith the degree exponent=2.9+0.1 from simulation analy-
observations of real system behavigesg., Milgram's six ~ Sis andy=3 from the analytical resufi8]. These results are
degrees of separatids]). A common feature of the random Significant for complex networks and the two mechanisms
graph and small-world networks is that the degree distribuform the first model, referred to as the Barabasi-AltBa)
tions (the probability of finding a node witk connections ~ Model, by which large networks can self-organize into a sta-
are Poissonian. However, empirical evidence from somdionary scale-free state. Empirical evidence shows that in
growing networks, such as the Internet and WWW, show e{r?uamnger:eg’}'o:]zsdet:[elo?un_;gg ?e-f de?gefhgr?x\l/segizgzotsagf the
fgndgmgntally different picture, €., the tail Of. the degreem-varying BA models, such as that of Dorogovtsev and
distribution follows a power law. This led to the introduction Mendes{20].
n 1999_ (_)f SC?'G'Tfee n_etworks by Albert, Jeong, and Our research is mainly motivated by the following obser-
Barabasi, in their pioneering woffl6—8], and the start of a

. . vation. While analytical solutions of the degree distribution
new phase in the study of complex networks. Recent studle,%r some simple models of growing networks, such as the

[9-2(] are characterized by empirical observations of scaIeBA model, can usually be obtained, one has to resort to
free behaviors in various practical systems and investigationgimuh,i,[ion’for solutions when the me’chanisms in the model

of the formanon mechamsm_s of scale-free networks. A NUMhKecome more complex. This may inhibit the further develop-
ber of important properties in scale-free networks have beeﬂwent of the theory on complex networks. In this paper, we

identified, such as the small-world cha}r.acter, the emergen opose an alternative approach. We first find that the degree
of hubs, and robustness and frangibility. These propertie volution of a growing network can be characterized by a

show that scale_-free networks can play an important role ir%equence of nonhomogeneous Markov chains. By carefully
theTunderstanolll?g of many cgmpLex anddlmportant sy;steml nalyzing the structure of these Markov chains, we can then
wo general features can be observed in many real-work evelop an efficient numerical method to compute the net-

networks: successive additions of new nodes and certaif), . gegree distribution. To show the feasibility and effi-

ciency of our numerical method, we compute the degree dis-
tributions of growing networks under the basic BA model
*Also at College of Mathematics and Computer Science, Fujiarand two of its variants.
Normal University, Fuzhou 350007, China. We organize the paper as follows. In Sec. I, we first
"Electronic address: liulim@ust.hk review some of the existing methods for network degree dis-
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tributions. We then show, using the BA model, how the de- > P(k.t,t)
gree evolution of a node in a growing network can be repre- P(k,t) = i _
sented as a Markov chain. Exploring the special structure of

the transition probability matrices of these Markov chains,

we derive a formula by which the network degree diStribu'Assuming that the limitP(k)=lim,_.P(k,t) exists and
tion can be efficiently computed. In Sec. Ill, we present thelim {P(k,t+1)-P(k,1)]=0 (an adEgonai conditiop the
numerical results for the BA model, comparing them with de t?eme dist'ributiorP(k), satisfies the equation

the analytical results, and discuss issues related to the imple- 9 q

mentation of the computation procedure. In Sec. IV, we con-

struct the Markov chains for two-varying BA models and 2P(K) = 28 m= (k= 1)P(k - 1) - kP(Kk), (7)
provide the numerical results of the network degree distribu-

tions. We conclude the paper and point out some future re- . .
search opportunities in Sec. V. with the solution

(6)

Il. DEGREE EVOLUTION AND MARKOV CHAINS (K) = 2m(m+ 1) ®)

: _ _ T k(k+ D (k+2)
With the preferential attachment mechanism of the BA

model, the probability that nodeadded at time step re-

ceives a connection from an upcoming new node is proporKrapivsky, Redner, and Leyvraz's rate-equation approach
tional to its own degreé; [7], i.e., [15] focuses on the numbeM,(t) of nodes withk edges at

time t. For the BA modelN,(t) is shown to satisfy

ki
)= Elk ' W ANe (K= DNy _4(t) = KN(t)
i d—tk:m zk‘l K+ S 9)
KN, (t) ’
Assuming continuity ok;(t) and treatindl(k;) as its rate of kK
growth, the degree of nodeat time stept then satisfies the
following dynamic equatioh7,8]: Asymptotically,N,(t) =tP(k) andZkN,(t) =2mt, which leads
to Eq. (7).
a—ki—ml'l K) = ki _ ki 5 While the above methods handle well simple models,
a (ki) = mE k. T ot 2 such as the BA model, they may not render analytical solu-

i tions for more complicated models. In this case, one can
o » ) usually use simulation. While simulation is widely appli-
Under the initial condition thak;(t;)=m, the solution of Eq.  caple, it can be quite time consuming and may not be flexible
(2) leads to enough for in-depth analysis of network behaviors. Here, we
propose a different approach to capture the network dynam-
_(t P _1 ics. We use the BA model to present the idea and the proce-
k() =m , B=<, (3
t; 2 dure of our approach.
Consider the degréee;(t) of nodei at timet. Based on the
wheret; is the time when nodgjoins the network, and to the preferential attachment mechanism of the BA model, the se-

degree distribution quence{K;(t), t=i,i+1,...} is a stochastic process with the
state spac€)={m,m+1, ...} (noting that the original nodes
P(k) ~ 2n?k™?,  y=3. (4)  are not considergdHere and below, we use the upper cKse

to emphasize the fact that the degree sequence is a stochastic
Here, g is called the dynamic exponent whijeis the degree  process. The attachment mechanism also indicates that the
exponent. future evolution of the process is independent of the past
The above simple analytical method is often referred to asistory, given its current state; but it is time dependent. This
the continuun(mean field theory. Similar power-law results  shows that the proced&;(t)} is in fact a nonhomogeneous

for the degree distribution of the BA model are also obtainedviarkov chain[21], with time-dependent transition probabili-
using different analytical methods by other authors. For extjes

ample, with the master-equation appro@th]|, Dorogovtsev,
Mendes, and Samukhin treat the degkg® of a nodei at a

fixed time t as a random variable. Thus its probability Pt +1) = P{K;(t + 1) = j|K;(t) = k}
P(k,t;,t) satisfies the following relation: 1-k2t, j=k,
=1 k/2t, j=k+1 (10
k-1 K _
P(kt,t+1)= TP(k— 150+(1- o P(k.t,t). (5) 0 otherwise,
Let for k=m, ... , m+t-i, and fork>m+t—-i, we set
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1, j=Kk, Markov chain and the whole netwotkxcluding the original
Pt +1) = 0 %k (11)  nodes is completely described biynonhomogeneous Mar-
’J ' kov chains, wheré is the time of the observation. L&(t
since P{K;(t)=k}=0. Thus, the dynamics of a node from the +1) be the one-step transition probability matrix of nads
time it joins the network is described by a nonhomogeneousme t. We have, fort=i,i+1,...

m m

1__ J—

2t 2t

_m+1
2t
P(t+1)= . (12
m+t—-i m+t—i
2t 2t

Now let ﬂ(t) be the probability vectofdistribution of  finite matrices, which are in general very difficult numeri-
K;(t) for a givent, and cally. Fortunately, our past experience in infinite matrix com-

. putations[22] with a rectangle-iterative algorithm guides us
. - FSY (t+1 to explore the special structure of the one-step transition
FSDE+ )= fit+1), Plkt+1)= % probability matrices. This leads to dramatically simplified
=S matrix manipulations and a highly efficient algorithm.
(13 We note that while the transition probability matrices of
consecutive nodes are different, their structural similarities
lead to the following relations:

T

Here, the intege$= 1 is needed technically for the transition
probability matrix. It is related ton, and its value and impact
can be better understood when we discuss the computatio - . . .

. . : (1) = =S+1,S+2,... =i+1i+2, ...
results in the next section. The meaning and the value of thetélp'(t) €Ps(l), 1=S+1,5+2,..., t=i+li+2, ...,
integerT<t will also be clear when we describe the compu- (16)
tation procedure later. In Eq13), we use thek—m+1)th

componentF>"_ (t+1) of vector FS(t+1) to compute  &P,(t)Pi(t+ 1) =& Pg(Pgt+1), i=S+1,S+2, ...,
P(k,t+1) since the probability vector starts with degnee (17)
then degreem+1, m+2,.... Finally, the desired degree dis- t=i+1,i+2,...,
tribution of the network iP(k)=lim,_.P(k,t+1).

Let us examine Eq(13) to see what is involved if we and in general
want to compute the network degree distribution. It is clear

thatP{K;(i)=k}=1 if k=mand 0 otherwise. We then have the &P;(t)P,(t+1)---Pi(t+s) = €Pg(t)Pgt+ 1) --- Pt +9),

initial probability vector (18)
fi()=(1,0,0,..)=¢& (14 fori=S+1,8+2,...,t=i+1,i+2,..., ands=2,3,....Substi-

for any i. By density evolution of Markov chain, the&  tuting the above relations into

+1)th-step probability vectof;(t+1) is given by T

ft+1) =6 Pi+1) -Pi+2)- Pyt+1), FEt+ D=2 f(t+D)
(195

i=S

o T
L =2 &P(i+1) - Pi+2)P(t+1),

i=S

where the ellipsis on the right-hand side of the equation rep-
resents matrix multiplications. This, together with Ef3), (19
shows that computing the degree distribution requires the

multiplications and summations of an infinite number of in-we obtain the following key computation formula:
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FIG. 1. The complete degree distributions of the BA model with  FIG. 3. The degree distributions of the BA model fo=1, 3,
differentm andt. From left to right by the numerical metho(it) and 5 from left to right.
m=1 and S=1 with t=150000; (2) m=3 and S=2 with t

=100 000, 150 000, and 200 000, respectively; @ﬁm:5 and I1l. COMPUTATION RESULTS AND DISCUSSION
S=3 andt==150 000. The analytical results from formy# is the
dashed line, withm=5. In this section, we discuss the numerical results for the
BA model.
~ Figure 1 shows the complete degree distributions of the
FED(t+1) =({--[6Py(S+ 1) +EIP(S+2) + -} + &) BA model on a log-log scale, with different computation
XPYT+1) - Pyt +1). (20) timest. We observe that each solid curve can be divided into

three different sections: a straight middle section, clearly ex-

With Eg. (20), the computation oﬂE<St)(t+ 1) becomes hibiting the power-law property; a head section and an end
very easy. We start from the innermost bracket. After onesection that bend inward, i.e., very small and very large de-
multiplication and one summation, we obtain a row vectorgrees with probabilities smaller than the power law dictates.
whose first two elements are nonzero. The second round dfhe numerical result matches the corresponding analytical
multiplication and summation leads to a row vector with theresult (the dashed linealmost exactly except at the end of
first three elements being nonzero, and so on and so fortfthe curve.
The final result is a row vector with the first S+ 1 elements Why are the probabilities computed here smaller than the
being nonzero. An efficient algorithm with a complexity of power law would give at the end of the curves? By the BA
O(t?) can be developed to implement formu20) numeri- ~ model, the degrees of the initial nodes are not considered in
cally. the computation of the network degree distribution, but they

are likely to be among the group of nodes with the largest

, degrees, i.e., with degrees close to the end of the curve. With
the numerical methodor simulation for this mattgr we
have to stop the computation at a finfteand thus the pro-
portion of the ignored initial nodes among all the nodes with
] largest degrees can be large enough to lower the degree prob-
abilities of the end section. The sooner the computation
] stops, the earlier the curve bends. This can be see from the
three curves of cas@) with different stopping times. With

TABLE |. Degree exponent and coefficients of the BA

E model.
0 1 Parametem Time't Exponenty Coefficientc
107E 1 150000 2.960830 3.147515
B 3 100000 2.989636 21.79266
10
10° 10° 3 150000 2.990032 21.89667
3 200000 2.980275 21.01711
FIG. 2. The degree distributions of the BA model witt¥5 for 5 150000 2.978894 52 58430

S=3 and 13.
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the analytic method, we do not observe this effect)., from  for the small degrees, the three triangle curves are basically
the dashed linebecause it gives the degree distributiontas parallel, indicating that the degree exponent of the BA model
approaches infinity. is independent om.

Now consider the bending at the head of the curves. For- |n Table |, the exponeny and the coefficient are fitted
mula(4) is obtained by the continuum theory. Strictly speak-for differentm andt using the least squares method. We note
ing, it is a density(integrating fromm to < yields 1. Using  that for the degree exponent in Table I, we do not include the
it to approximate the discrete probability for largés suffi-  gata for small degrees in the calculation. Similarly, they are
ciently accurate. For small degrees, it tends to overestimatgyt included for the exponents in Tables 11l and V below. We
the probab_ility. This can be seen from formm&; which is  gpserve that the degree exponent is independemtanid the
ob.t:?u'ned W'th. a discrete approach. Wtieis small, the prob- value matches those of simulation and the analytical solution
abilities obtained from Eq(8) are smaller than the corre- with the mean field method. The coefficient of degree distri-

sponding power-law probabilities. So formu(8) can be . . . .
used to estimate small degree probabilities. The MarkO\Pu“(;)rgtCic';l bveatmie?roai ?:g ?gg;%qigﬁg‘n”;aptgz')';%;hiur_

chain method is a discrete approach and can also take careﬁfE B
the small degrees. thermore, results fom=3 show that the coefficiert is in-

Recall that the initial nodes are ignored in the BA modeldependent of, i.e., the network is stationary.
in computing degree distributions. Whemis greater than 1,
we also need to take out additional nodes for the transition IV. m-VARYING BA MODELS
probability matrices to be properly defined. For example, the
first node is ignored whem=3 and the first and second Section Ill shows that the Markov chain method provides
nodes are ignored when=5. In the algorithm, we eliminate accurate results with a moderate computation time. In this
these nodes by starting the computation from time Sep section, we show that this method can be efficiently applied
Generally speakingS mainly affects the end section of the to more complex models. We will construct the Markov
distribution in the numerical method. In Fig. 2, the solid chains and compute the degree distributions of two cases of
curve corresponds to the case w3 while the dashed the BA model withm-varying functions, which are of inter-
curve corresponds to the case wih 13, and both have the ests as empirical evidences have shown that the number of
samem=5 and the same stopping tine 150 000. We ob- edges grows faster than the number of nodes in many net-
serve that the two curves overlap all the way down to a poinworks[10].
aroundP(k) =~ 10°®, where both curves start bending inward,
but the curve forS=13 obviously bends more. In other A. Power function
words, the exact value & mainly affects how much the end : :
section bends. Let mt’ be the number of new links added at time step

Summarizing the above analysis, we conclude that th@=0<1, e., n_odet will link i;self to mt’ differ_ent existing
head and middle sections of the curves computed by thgodes. Everything else remains the same as in the BA model.

Markov chain method capture the degree distribution of the We note that aftert.t|me steps, the network had=t
BA model accurately. For the end section, the numerica]f Mo nodes and approximatefymx'dx links. The total num-
method underestimates the degree probabilities because WE' ©f degrees in the system at times
can only compute up to a finite time. Fortunately, what we t om
really want to know is whether the power law holds for a 2 ki ~ zf mxydx= ——t#1, (21)
particular network(mode) and what is the exacy value. j 0 6+1
These can be determined by the middle section of the curves. . o o .
If the curves show a power-law behavior, the network isASSUMINg continuityki(t) then satisfies the following dy-
scale-free. Otherwise, it is not. Either way, our method carl@MIC equation:
help to determine the pattern as long as the degree evolution ok K (6+ Dk
can be modeled by this type of Markov chain. In general, if — =mtll(k) = mtf—— = ————.
the computation time is between®l4nd 16, the choice oS a >k 2t
can be between 20 and 30, and the section of the curve with .
probabilities between 18 and 10° should be sufficient to  Under the initial conditionk;(t)=mt’, wheret; is the time
reflect the asymptotic behavior of the degree distributionswwhen nodei joins the network, we solve this equation and
Therefore, in Figs. 3-5 below, we will provide the degreeghtain
distribution in the probability range from $@o 107,
We now compare the numerical results of the BA model 9
with the analytic results from formulg). ki(t) =m t
The dashed curves for the analytical results and the tri- '
angle curves for the corresponding numerical results in FigHence the degree distribution at tirhés
3 overlap almost completely. It is clear that the numerical
results are extremely close to the analytical results. The tri-
angle curve in the middle is in fact the overlapping of three
curves corresponding to three differéntalues. This shows
that the degree distribution is stationary. Furthermore, excepwith

(22)

B
:mt‘g(t>, B:u. (23

)(l+0)/2 _
t 2

2
P(k,t) ~ mmy(l_a)tzk_y, (24)
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3-0 20 (t+ 1) =P{K;(t+ 1) =j|Ki(t) =k
y= . z= . (25) pk]( ) f{ |( ) J| |( ) }
1-6 1-¢ 1 (6+ Dk =k
Here,z is called the nonstationary exponent. Thissarying 2t =%
BA model was proposed if20]. _ =< (0+ Dk _ _ 27
We now construct the Markov chains for the degree se- o j=k+1,
quence{K;(t), t=i,i+1,...}. The state space iQ;={m,,m; .
+1,...}, wherem=m[i?] (or m=[mi?]). At time t, the prob- 0 otherwise.
_ab|I|ty that an existing nodewill connect with the new node ¢, k=m, ..., m+t-i: and sinceP{K(t)=k}=0, we set, for
1S k>m +t—i,
ki (6+ Dk e
mtf—— =~ ———. (26) 1, j=k
(t+1= . 28
Sk 2 Palt* D=0 k. 28
Hence, the one-step transition probabilities are Thus the transition probability matrix is
|
LGRS R ()
2t 2t
_(m+D(+1) (m+D)(H+1)
2t 2t
P,(t + 1) = ..
1o (m+t-i)(0+1) (Mm+t—i)(6+1)
2t 2t
1 0
) " (29
[
for t=i,i+1,.... on formula(20) can be used to compute the degree distribu-

We now provide the computation results whg&n0.2 and  tion for this network.
S=32. We note that the structure of the transition probability From the computation results, we plB(k,t) for some
matrices here is similar to that ¢£2). The difference is that different m andt on a log-log scale in Fig. 4. We also list
now m; is a step function of, as shown in Table Il. There- some numerical results in Table Ill, from which it is clear
fore, relations(16)—«(18) hold for each interval, e.g., the in- that this network self-organizes into a nonstationary scale-
terval (243,1023, and we obtain the following important re- free network, with a degree exponepy=3.5.
sult: Figure 4 shows the degree distributions from the numeri-
cal method and from formulé24), respectively. In cas€?)
of the numerical results, the three curves are separated, dem-

F20(t + 1) = F32243(¢ 4 1) + F243.1032(t 4 1) 4 ... onstrating the nonstationarity of the degree distribution.
. . Again, we can see from the lower part of the curves that the

+ (5904999 998 4 1) + F(100 0000 (¢ 4 7). degree exponents are essentially independennafs the
(30) lines are basically parallel to each other. We note that the

R three dashed lines of the analytical results are almost per-
Similarly, the initial probability distribution isf;(i) fectly parallel to the lower part of the corresponding solid
=(1,0,0,..)=§, for anyi. Thus the same algorithm based curves, showing that the numerical results and analytical re-

TABLE Il. Intervals of constantn; for the power function case.

Time i 32 243 1024 3125 7776 16807 32768 59049 100000 161051

[i%9 2 3 4 5 6 7 8 9 10 11
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10 . . . TABLE Ill. Numerical results of the power function case.
b ] Parametem Time t Exponenty Coefficientc

1 150000 3.502938 891.641

102k § 3 100000 3.499978 8213.46
3 150000 3.502746 10920.8

2 g ] 3 200000 3.496971 12300.2
; 5 150000 3.503176 37303.5

We note that aftett time steps, the network had=t
_ +my nodes and approximatelfimIn x dx links. Then, the
number of total degrees of the system at titmig

t

EkaZJ min x dx=2mt(nt - 1). (31)
FIG. 4. The degree distributions of the power function case. ! 0
Five solid curves for numerical results from left to right fdy m o
=1 with t=150000; (2) m=3 with t=100000, 150000, and The average system degreéis2m(Int-1), i.e., it follows a
200 000; and3) m=5 with t=150 000. Three dashed lines for the |oqarithmic law. Due to its complexity, there has been no
corresponding analytic results from left to right fom=1, t  5nantical results for the degree distribution for this
=150 000;m=3, t=200 000; andn=5, t=150 000. m-varying BA model

We now construct the Markov chains for the degree se-

quence{K;(t), t=i,i+1,...}. The state space Q;={m;,m

sults match very well in term of the degree exponent. Sincer1, ...}, wherem;=m[Ini] (or m=[mIni]). At time t, the
(24) is obtained using the mean field method, it does noprobability that an existing nodewill connect with the new
characterize the small degree accurately as discussed in Sexde is given by

[ll. This can be seen in Fig. 4 in which the solid curves bend

obviously on the top while the dashed lines are completely k. Kk Int
straight. We also observe that whem=5, there is a gap mint—~ —— : (32)
between the lower part of the solid curve and the dashed line. Ej Ki 2(Int-1)
This can be attributed to the difference between the con-
tinuum approach fof24) and the discrete approach for the Hence, the one-step transition probabilities are
numerical computation. The continuum approach may over-
estimate the number of links while the discrete approach .
tends to underestimate the number of links, in particular Pi(t+1)= Pr{Ki(H D =jlKi(t) =k}
whenm is large. For example, whem=5, the number of kint
links added between times=32 and 242(see Table I is 1 _m' =k
5t%2 for the mean field method, but for our numerical _ )
method, it remains a constanitt%?]=10. =] _Kint j=k+1 (33
2t(nt-1)" '
LO, otherwise

B. Logarithmic function
for k=m, ... ,m+t=i. Again, sinceP{K;(t)=k}=0, we set,
Let mInt be the number of new links in time stedor ~ for k>m+t-i,
t=2.

1=k,
Pi(t+1) = { (34)

0 j#k.

TABLE IV. Intervals of constantn; for the logarithmic function case.

Timei 21 55 149 404 1097 2981 8104 22027 59875 162755

[Ini] 3 4 5 6 7 8 9 10 11 12
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Thus, we have, fot=i,i+1,...,
m; Int m Int
2t(Int-1) 2t(Int-1)
(m+2LIint (m+1)Int
2t(nt=1) 2t(Int-1)

Pi(t+1)=

(m+t=i)int (m+t-i)nt

2t(Int-1)

2t(Int-1)

1

PHYSICAL REVIEW E71, 036140(2005

(35

We note that the structure of the transition probability showing that when the degree becomes larger, the effect of
matrices here is similar to that of E(L2). With S=21,m is  the jumps becomes weaker. Also, if we usg=[mIni] in-

a step function of as shown in Table IV.

(404,1096. Thus we obtain the following important result:

E(Zl,t)(t+ 1) = E(21,54;(t+ 1)+ E(55,14a(t+ 1)+ -

V. CONCLUSIONS AND DISCUSSION

stead ofm;=m[Ini], the oscillation should be less obvious,
Therefore, relation$16)—(18) hold for each interval, e.g., but the computation time will increase.

We have established a correspondence between the degree
+ F(59875,16275]¢ 4 1) 4 F(1627550(¢ 4 1) evolution of a growing network under the BA model or its

(36)

variants and a set of nonhomogeneous Markov chains. By
manipulating the transition probability matrices, we develop

Similarly, the initial probability distribution isﬂ(i) an efficient procedure to estimate the degree distribution nu-
=(1,0,0,..)=6, for anyi. Thus the same algorithm based merically with remarkable accuracy. Through detailed analy-

on Eq.(20) can be used to compute the degree distributio
P(k,t) for this network.

We provide the numerical results in Table V and Figure 5
Table V shows clearly that this network self-organizes into a
nonstationary scale-free network, with the degree expone
y=3.1.

We note from Fig. 5 that the three curves witi+3 are

nsis and comparisons of the analytical and numerical results,
we show how to implement the numerical procedure effec-
tively. In conclusion, our numerical method provides an ef-
fective alternative to the analytical approach, especially
r\]/{/hen it is difficult to handle more complex network models
analytically.

very close to each other, but they do not overlap entirely. '

This shows that while the degree distribution is not station-
ary, the nonstationary exponent is very small. On the other 14|
hand, we can see some oscillations in the last curve mith
=5. We believe that this is mainly due to the jumps of the
number of new links whefin i] increases. With a largem,

the size of the jump is bigger, making the oscillations in the
last curve more pronounced. But we note that the oscillationg s}
becomes less obvious when the degree is large enougt
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TABLE V. Numerical results of the logarithmic function
case.

Parametem Timet Exponenty Coefficientc
1 150000 3.169873 542.9149 1075 - . ” -
3 100000 3.117526 1539.876 K
3 150000 3.081926 1722.288 FIG. 5. The degree distributions of the logarithmic function
3 200000 3.050253 1952.588 case. Five curves from left to right fot) m=1 with t=150 000;(2)
5 150000 3.029171 2823.681 m=3 with t=100 000, 150 000, and 200 000; af® m=5 with t

036140-8

=150 000.
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The use of Markov chains to model the degree evolutiorMarkov chains through many years’ theoretical development
opens the door for the application of methodologies and reand applications to the study of many natural phenomena.
sults from a mature field to the exciting field of complex
networks. For instance, can we model the joint degree evo-
lution of two nodes by two-dimensional Markov chain and ACKNOWLEDGMENTS
compute the joint degree distribution? Can we construct a o )
different type of Markov chain to model the distance be- We thank Wang Binbin and Zhou Huijie from Shanghai
tween two nodes so that the average path length can be cofdhiversity for helping us with the numerical computation.
puted? The fact that the evolution of a complex network canThis research is supported in part by the National Natural
be modeled by Markov chains may indicate an importantScience Foundation of China through Grant No. 70171059,
direction for us to investigate the underlying mechanismdy the 863 Project through Grant No. 2002AA234021, and
and the essential properties of growing networks, utilizingby Hong Kong Research Grant Council through Grants No.
the extensive understanding of the structural properties diKUST6089/00E and No. HKUST6198/01E.
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